Search results for "Thin-walled structure"

showing 2 items of 2 documents

Buckling and post-buckling analysis of cracked stiffened panels via an X-Ritz method

2019

Abstract A multi-domain eXtended Ritz formulation, called X-Ritz, for the analysis of buckling and post-buckling of stiffened panels with cracks is presented. The theoretical framework is based on the First-order Shear Deformation Theory and accounts for von Karman's geometric nonlinearities. The structure is modeled as assembly of plate elements. Penalty techniques are used to fulfill the continuity condition along the edges of contiguous elements and to satisfy essential boundary conditions requirements. The use of an extended set of approximating functions allows to model through-the-thickness cracks and to capture the crack opening and tip singular fields as well as the structural behav…

0209 industrial biotechnologyPost-bucklingShear deformation theoryStructure (category theory)Aerospace Engineering02 engineering and technology01 natural sciences010305 fluids & plasmasRitz methodSet (abstract data type)020901 industrial engineering & automation0103 physical sciencesStiffened panelBoundary value problemSingle domainSettore ING-IND/04 - Costruzioni E Strutture AerospazialiMathematicsCrackbusiness.industryBucklingThin-walled structureX-Ritz methodStructural engineeringFinite element methodBucklingbusiness
researchProduct

Unified theory for analysis of curved thin-walled girders with open and closed cross section through HSA method

2016

Abstract The behaviour of thin-walled structures is deeply influenced by non-uniform torsion and cross section distortion. In this paper the extension of the Hamiltonian Structural Analysis (HSA) Method to thin-walled straight and curved beams is presented. The proposed method solves the structural elastic problem of thin-walled beams through the definition of a Hamiltonian system composed of 1st order differential equations. The method allows engineers to solve the elastic problem by introducing the degrees of freedom and the corresponding compatibility equations, founding equilibrium equations in the variational form. The methodology is explained in the framework of the so-called Generali…

Timoshenko beam theoryCurved beamDifferential equationThin-walled structuresTorsion (mechanics)020101 civil engineeringDistortion02 engineering and technologyElastic foundation0201 civil engineeringHamiltonian systemTransfer matricesSettore ICAR/09 - Tecnica Delle Costruzioni020303 mechanical engineering & transportsClassical mechanicsExact solutions in general relativity0203 mechanical engineeringHamiltonian structural analysisGirderBeam on elastic foundation analogyUnified field theoryBeam (structure)Civil and Structural EngineeringMathematicsGeneral beam theory
researchProduct